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Abstract
We study bond percolation of N non-interacting Gaussian polymers of �

segments on a 2D square lattice of size L with reflecting boundaries. Through
simulations, we find the fraction of configurations displaying no connected
cluster which span from one edge to the opposite edge. From this fraction, we
define a critical segment density ρL

c (�) and the associated critical fraction of
occupied bonds pL

c (�), so that they can be identified as the percolation threshold
in the L → ∞ limit. Whereas pL

c (�) is found to decrease monotonically with �

for a wide range of polymer lengths, ρL
c (�) is non-monotonic. We give physical

arguments for this intriguing behaviour in terms of the competing effects of
multiple bond occupancies and polymerization.

PACS numbers: 05.40.Fb, 64.60.Ak, 61.41.+e

(Some figures in this article are in colour only in the electronic version)

Studied for many decades, the percolation problem is rich and venerable [1]. To this day,
interesting new issues continue to surface, for example, in the context of percolation of circles
[2], ellipses [3], random surfaces [4] and polymers [5]. Motivated by recent experiments
on transport of small gas molecules across a polymer membrane [6], we investigate a novel
aspect, namely, bond percolation with a specific correlation between the bonds. In particular,
we consider a standard model for polymers: a chain of � segments linked to form a random
walk (RW) in space. If, instead of continuous space, we use discrete lattices, it is natural
to place the segments on the bonds. With certain considerations for our physical system in
mind, we study ordinary (i.e., non self-avoiding) RW’s. Clearly, the locations of the bonds
occupied by one polymer are strongly correlated, except for the � = 1 case. If we place N
such polymers randomly on a finite lattice and ask when the occupied bonds percolate, we
face a ‘correlated-bond’ percolation problem.

Before defining our problem in detail, let us devote a paragraph to a typical experiment.
First, a thin polymer membrane is formed by quenching a polymer melt to a temperature far
below its glass transition. To study permeation by small gas molecules, a pressure gradient
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Figure 1. Gas molecules diffusing from left to right across a 10 × 10 lattice, carrying N = 3
polymers of length � = 20.

is set up across the membrane and the gas current, in an effective steady state, is measured.
The focus of the experiments in [6], namely, how ageing the membrane affects such transport
properties, serves only as a motivation for our model and investigation here. Detailed studies
of gas transport will be published elsewhere.

For simplicity, we introduce a two-dimensional (2D) version of this system. As the
polymers originated from a rubbery state, we feel justified to neglect the complications due to
self-avoidance; further, the polymer matrix is essentially static on the time scales associated
with gas transport. Therefore, we represent each polymer as a simple RW, on a square lattice
of size L2 (cf figure 1). To model a finite system with real boundaries, we impose brick wall
boundary conditions on these walks. To be specific, we start a ‘walker’ at a randomly chosen
site, with each step to a nearest-neighbour site (a bond) modelling a segment of the polymer.
When a walker arrives at a boundary site, the probability for reversing direction is 1/2 (instead
of 1/4 in the bulk). In this way, a bond represents a ‘segment’ of the polymer of the persistence
length, rather than a physical monomer. Note that, since the RWs are not self-avoiding, each
bond may be multiply occupied and we will use the term ‘m-occupied’ to signify a bond
carrying m segments. Meanwhile, the gas molecules are located on the cells of our lattice and
diffusion is modelled by hopping to a nearest-neighbour cell, across a bond. The rate for a hop
across an m-occupied bond will be controlled by an activation barrier: exp(−mε/kBT ),
where T is the temperature and ε is an energy associated with jumping over a single
segment.

As the polymers are static in this model, we are dealing with driven diffusion in a quenched
random medium. Transport through static disordered media with random energy barriers has
been extensively studied in the past few decades. Unlike many previous studies [7] of this
type, the energy barriers in our medium possess strong spatial correlations since the segments
of a single RW are highly correlated. In this letter, we focus on a much simpler question:
in the low-T, high-ε limit, what is the probability that there will be any current through the
membrane? In this limit, crossing any occupied bond is forbidden. Thus, for a 2D system,
the quantity of interest is precisely the probability for the occupied bonds to form a connected
cluster that spans the system in the direction transverse to the pressure gradient, i.e., the
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percolation probability in one of the directions. Of course, the picture is more complex for a
3D system, on which we will comment at the end.

Let us briefly comment on the differences between our focus and earlier studies which
addressed this problem [5, 8]. Previously, all polymers were modelled as self-avoiding walks
(SAW). Clearly, these pose more challenging combinatorial questions than our RWs, so that
analytic progress is essentially impossible. In another respect, however, SAWs are simpler:
since bonds are at most singly occupied, a given density of polymers maps directly into a delta
distribution for the probability of bond occupation. Further, only relatively short polymers
(� � 16 in [5]) were considered, focusing on singular properties near the percolation threshold.
Thus, finite size scaling techniques were invoked to draw conclusions in the thermodynamic
limit. By contrast, the samples in permeation experiments are quite thin so that � and L can
become comparable. As a result, we will need to pay attention to finite system sizes here.
To the best of our knowledge, ours is the first attempt to study percolation of polymers on a
lattice with multiple bond occupancies, in this particular scaling limit (�/L ∼ O(1)).

Turning to the specifics of our problem, we place the pressure gradient in the x-direction,
so that the presence of a particle current translates into the absence of a connected cluster of
occupied bonds spanning the boundaries y = 1, L. Our question is now well posed: of all
systems with N random walks (polymers) of � steps (segments), placed randomly on a L2

lattice, what is f , the fraction which contains no cluster of connected segments spanning the
system in one of the directions?

Clearly, in a gas permeation experiment, f is just the fraction of ‘open’ configurations,
allowing nonzero current. Let us emphasize that, due to multiple occupancies, there is no
simple, 1–1 relation between p, the fraction of occupied bonds, and the segment density,
ρ ≡ N�/(2L2) (proportional to the mass density of the sample). In contrast, for the SAWs
in [5], p is exactly ρ. Here, we have a distribution of p’s, a quantity to be denoted by
P(p; �,N,L). Even in the � = 1 case—for which single segments are randomly placed and
we can easily find the probability for a bond to be unoccupied: [1 − 1/(2L2)]N—the entire
distribution is nontrivial [9]4. For arbitrary �, we are not aware of an analytic expression
for P . However, for large N and L, with fixed �, we may expect P to be sharply peaked,
as illustrated in figure 2. In all cases, we may define the average p̄ ≡ ∑

pP and use it as
a control parameter instead of ρ. Of course, their relationship is of interest. In general, we
have no analytic expression for p̄(ρ; �, L) though we are able to find good estimates in some
regimes [10]. To demonstrate this nontrivial dependence, we show in the inset of figure 2
simulation results for p̄(ρ; �, L) versus � at two different densities and L = 128. We find that
increasing � at fixed ρ decreases the fraction of occupied bonds, since longer polymers tend to
overlap more. Note that neither the details of P nor its average p̄ are needed for determining
the main quantity of interest: f (�,N,L). We raise these issues related to p purely for those
familiar with the standard question of ordinary bond percolation: if a fraction p of the bonds
is occupied, what is the probability for the system to percolate?

To study f , we perform simulations for various ρ ∈ [0.25, 2.0] and L ∈ [32 256]. With a
full range of �’s and N’s, we find not only the typical percolation transition, but also seemingly
contradictory effects due to the correlations. Focusing on the first aspect, we consider the data
for fixed � but increasing L. For example, in figure 3, we plot f against ρ, with � = 256 and
L = 32, 64, 128, 256. Not surprisingly, f is essentially unity for small ρ and zero for large
ρ. In the L → ∞ limit, we expect f to become a step function, vanishing for ρ > ρc, i.e., the
‘percolation threshold’. For our finite systems, we see the approach to this behaviour, namely,

4 P(p; 1, N, L) ∝ S(N, M)(2L2)!/(2L2 − M)!, where S is Stirling number of the second kind and M ≡ 2pL2 is
the total number of occupied bonds. See also [10].
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Figure 2. The probability distribution P(p; �, N, L) for the fraction of occupied bonds p for
ρ = 1, � = 256, and different system sizes. Inset: the mean value p̄ versus polymer length � for
ρ = 1/2 and ρ = 1. The RMS deviation for all data points is of the order of 10−3.
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Figure 3. The percolation probability f (�, N,L) versus the segment density ρ for fixed � = 256
and several L.

f (ρ) falling off more steeply as L increases. As an estimate for ρc, we construct the (average)
local gradients, −∂ρf (ρ), which we expect to approach δ(ρ−ρc) with increasing L. Exploiting
−∂ρf as a ‘distribution’ over ρ ∈ [0,∞], we compute the average − ∫ ∞

0 ρ∂ρf and define
it as the ‘critical’ ρL

c (�) for each L. For the above L’s, these are respectively, 0.849, 0.754,
0.711 and 0.688. A naive extrapolation (linear in 1/L) leads to ρ∞

c (� = 256) � 0.67. To
express this result in the usual language of percolation, we find p̄(�, ρ;L) from the numerical
data and define the ‘critical’ p via pL

c (�) = p̄
(
�, ρ = ρL

c (�);L
)
. Extrapolating to L → ∞ as

before yields the percolation threshold p∞
c (� = 256) � 0.295 (data for L = 32, 64 and 128

shown in figure 4). This value is consistent with the � → ∞ projected value for the SAWs [5]:
0.349 ± 0.001 (based on extrapolation from � � 16). A more quantitative comparison must
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Figure 4. The effective percolation threshold pL
c (�) versus 1/L for various polymer lengths �.

Figure 5. The percolation probability f (�, N, L) for fixed density ρ = N�/(2L2) is plotted
against � for system size L = 128.

wait for better statistics and more sophisticated analyses (e.g., finite size scaling) and will be
reported at a later time.

Next, we turn to a second, very natural question: if we fix the density of segments in
a system, how will polymerizing them, into chains of increasing length �, affect f (�,N,L)?
Here, we discover a rather intriguing aspect of this problem, illustrated in figure 5: for small
densities, f (�,N,L) decreases with �, but displays the opposite trend for high densities—
increasing with �. For insight into these seemingly contradictory findings, we provide some
intuitive arguments. At low densities, linking isolated segments together into longer chains
clearly enhances the chances of spanning. As an extreme example, consider L segments so
that only one configuration can span the lattice. For � = 1, at the least, all of them must
have the same orientation and lie in the same column, so that the probability of spanning is
o((2L)−L). Yet, if they are linked to form a single polymer, this probability rises to O(4−L).
In contrast, at high densities correlations have the opposite effect: if randomly distributed
segments percolate, linking them together into chains tends to localize them and enhances
overlaps. As a result, percolating paths can be broken, and f (�,N,L) increases.

These competing effects of polymerization induce a dramatic �-dependence in the critical
density ρL

c . As illustrated in figure 6, there appear to be three distinct regimes, with two
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Figure 6. The critical segment density ρL
c (�) versus � at the percolation threshold for two system

sizes. For L → ∞, this plot may be viewed as a phase diagram: above the line, the polymers
form a percolating path, while none exists below. The data points correspond to � = 4n where
n = (0, 1, 2, 3, 4).

extremal points for ρL
c (�). Let us provide some intuitive arguments for these properties.

Focusing on the first regime (� � 4), consider � = 1, where our data suggest a critical density
of ρ∞

c (1) � 0.69 (in excellent agreement with the theoretical ln 2 � 0.693). If we now
generate the same segment density (0.69) with polymers of length 2, the second segment
has a probability of 1/4 to overlap with the first one, so that this density will not suffice for
percolation. Thus, ρL

c (2) must be higher than ρL
c (1), in agreement with our observations

(ρL
c (2) ≈ 0.74 in simulations). This effect continues to dominate up to a certain value �∗;

from the data shown in figure 6, we may conclude 4 � �∗ < 16. Our data indicate only a
very weak L-dependence in this regime, so that we are confident that the L → ∞ limit is
essentially reached. Next, we consider the third regime: polymers with � � L (the last two
data points in figure 6). Here, each polymer already occupies a significant fraction of the
system. Thus, adding another polymer increases ρ noticeably, but changes bond occupations
only marginally. In this sense, a disproportionately larger number of polymers is required
to span the system, leading again to increasing ρL

c with �. Since this regime is dominated
by the finite size of the system, we expect it to shift to larger � for bigger L’s. Sandwiched
between these two regimes, we observe the opposite effect, due to polymerization: after
reaching a maximum at �∗, the critical density decreases. In this regime, for reasons yet to be
understood, the argument we presented above applies again: tieing segments together generates
‘longer’ objects that percolate more easily. We conjecture that this second regime extends to
infinity in the thermodynamic limit, so that ρ∞

c (�) exhibits only a single extremal point at �∗,
with 4 � �∗ < 16.

In contrast, when expressed in terms of the bond occupancy, we observe no surprises:
pL

c (�) is monotonically decreasing. Since we also expect a monotonic dependence of p on ρ

(for fixed �), it is all the more remarkable that the effects of correlations built into the segments
by polymerization are so subtle to produce non-monotonic behaviour in ρL

c (�).
In summary, we have investigated f (�,N,L), the probability that N Gaussian polymers

of � segments, randomly distributed on the bonds of a square lattice, do not span an L × L

system. Since the polymers are simple random walks, the bonds are frequently occupied
by more than one segment, leading to a nontrivial correspondence between segment density,
ρ = N�/(2L2), and bond-occupation probability, p. For a given �, a sharp percolation
threshold emerges as L → ∞. For finite L, we define ‘critical’ values ρL

c (�) and pL
c (�).
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Measuring them by simulations, we study their behaviour for various �. We find that the subtle
interplay of polymerization and multiple occupancies leads to dramatic effects, especially for
ρL

c (�). Several limits, e.g., the extreme case of f (� = 2ρL2, 1, L), are analytically accessible
and will be reported elsewhere [10].

It is worthwhile to devote a few lines to comment on the experimental implications of
our work. Although our simulations were restricted to two dimensions, we believe that our
principal result, i.e., the two opposite effects of polymerization on percolation probability
(lowering pc on one hand, while making more free bonds available via multiple bond
occupancies on the other) should be present in higher dimensions also. Percolation-related
transitions in permeation properties have been observed experimentally, e.g. in [11] where a
jump in the gas current is seen when the volume fraction of the flexible component of the
polymer is increased beyond a threshold value. It would be interesting if the non-monotonic
variation of the critical density with polymer length could be tested experimentally.
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